

ТЕХНИКАЛЫҚ ҒЫЛЫМДАР
ТЕХНИЧЕСКИЕ НАУКИ
TECHNICAL SCIENCES

UDC 647.13

D.A. Abzalova^{1*}, Z.A. Ibragimova¹, M.A. Almukhanov², G.O. Altaeva¹, M. Garazhaev¹

¹Candidate of Technical Sciences, Associate Professor, M.Auezov SKU, Shymkent, Kazakhstan

¹PhD, Associate Professor, M.Auezov SKU, Shymkent, Kazakhstan

²Candidate of Technical Sciences, Associate Professor, A.Myrzakhmetov Kokshetau University, Kokshetau, Kazakhstan

¹Senior Lecturer, M.Auezov SKU, Shymkent, Kazakhstan

¹Teacher, master, M.Auezov SKU, Shymkent, Kazakhstan

*Corresponding authors email: dilya0158@mail.ru

**TECHNOLOGICAL PROPERTIES OF URETHANE RUBBER MODIFIED WITH
XYLITANE POLYESTER**

Abstract

A method for producing urethane rubbers based on polyester xylitane has been developed. Industrial peroxide vulcanizates based on urethane rubber SUR-8IG crystallize at room temperature, therefore, agents forming a more developed spatial structure are used to vulcanize this rubber. The presence of a dense transverse structure reduces the rate of crystallization of vulcanizates.

Urethane rubbers based on known copolymer polyesters do not crystallize and can be vulcanized with organic peroxides, diazocyanates, and a mixture of vulcanizing agents.

The nature of the selected vulcanization system largely determines the properties of the obtained rubbers – their hardness, modulus, residual deformation and other properties, therefore, industrial urethane rubber SUR-8PG can be used to manufacture parts for various purposes. The significant content of methyl groups in polyurethane SUR-8PG prevents crystallization and other intermolecular interactions. Rubber based on SUR-8PG rubber has a good glass transition temperature (T_c), but a relatively low elasticity.

The main task of this work is the synthesis of polyurethane rubber based on xylitane polyesters (SUR – 8TBk), obtained from waste from the hydrolysis and fat-and-oil industries, which has frost resistance and high elasticity.

Keywords: technological properties, urethane, rubber, glass transition temperature, viscosity, polyester, xylitane.

Introduction

Urethane rubbers of the SUR brand are one of the types of polyurethane – high molecular weight compounds containing macromolecules in the main chain – repeating urethane groups –O-CO-NH-.

Urethane rubbers differ from plastics, which have properties closest to polyamides, in their molecular weight and structure.

Over 150 brands of SUR are produced in the industry, differing in chemical composition (SUR based on esters are known under the brands SUR -PF, SUR -PFL, based on esters – SUR -8, SUR -8P, SUR -7, SUR -7L, SUR -7, SUR -7P).

The classification of ICS according to the methods of their processing into products has been adopted.:

- injection molding (vulcollans) liquid compositions from which products are obtained by combining molding with the synthesis of a solid "crosslinked" polymer – rubber;

- rolled, solid linear or branched products;

- thermoelastomers processed into thermoplastics

SUR is used in mechanical engineering, automotive, aviation, petroleum, coal, and sheet

stampings industries for the manufacture of parts and plates, as well as as an anti-corrosion coating that is resistant to abrasive and waterjet wear. Products made of urethane formopolymers are characterized by increased wear resistance, high strength, oil and gas resistance, good shock absorption properties, and resistance to oxygen and ozone.

Fig.1. Urethane rubber products

Urethane rubbers can be divided into 3 types:

Rolled rubbers are solid linear or branched polymers. Rolled SUR rubbers are used to make rubbers with high modulus and hardness, which are used for steering rod liners, sealing cuffs and gaskets.

Low-modulus injection-molded soft low-molecular-weight injection urethane rubbers are used in the printing industry, friction phthulas, parts in the radio engineering industry, as a sealing material in radio electronics, etc.

High-modulus injection molding - high-strength and high-modulus injection molding machines are used as optically active rubbers, for the manufacture of sealing cuffs to cylinders in the automotive and other industries, various diaphragms, brake rollers and gears of silent transmission, wear-resistant coatings. They are used to make screen elements and wear-resistant coatings, parts for various types of cars, etc.

Materials and methods

Technological properties of rubber produced by different vulcanization systems (hydrogen peroxide, dimension hydrogen peroxide) were tested to characterize SUR -8TB_k raw rubber; its resistance to the aggressive conditions was also studied (laboratory samples).

The following properties were used to characterize raw rubber samples SUR -8TB_k based on the xylitane polyether:

1. solubility in the ethyl acetate (State Norms 33034-2014)
2. glass casting temperature (State Norms R 57931-2017)
3. viscosity according to Muni (State Norms R 24552-2011)

Results and discussions

SUR -8TB different raw rubber samples technological properties were studied. The main part of the raw rubber samples were completely dissolved in the ethyl acetate, this testifies to the fact that

it is of linear structure and there are no cross links. Some dissoluble polymer samples were obtained, and this may be explained by the fact that the ratio of some starting components has been changed. SUR -8TB_k raw rubber glass casting temperature is in the limits of -40/-43⁰C. Comparing SUR -8TB_k with SUR -8PG, glass casting temperature of which is in the limits -34, 5/-35,5⁰C, we may say, that raw rubber SUR -8TB_k has much more low Ts values [5].

The deviations stated are explained by the fact that poly ethers with larger molecular mass were used for the synthesis of these raw rubbers. Ratio viscosity according to Muni was used for the technological evaluation of the raw rubber. It should be noted, that this ratio is in the broad limits depending on the synthesis temperature and correlation of the starting components. We may state that poly urethane SUR -8TB_k (viscosity limits from 20 to 150 conditional units) is easily processed in the cold rolls.

Determination of the processing period influence on the SUR -8TB_k technological characteristics was fulfilled by measuring viscosity value according to Muni at different rolling periods.

Pelt for determining viscosity according to Muni was manufactured in the laboratory rolls of 160 x 320 mm size, friction was 1: 24/ 1, 27; the front roll rotation velocity was 23 – 27,5 revolutions per minute, the gap between the rolls was 1,0 – 0, 05 mm.

Raw rubber was processed in the rolls, where the rolls' temperature was 25⁰ C; the processing period varied from 5 to 20 minutes.

Variations of SUR-8TB_k viscosity according to Muni depending on the processing period at 25⁰ C were investigated.

The curve testifies that if the processing period is increased, viscosity according to Muni is lowered; it may be connected with the partial destruction of the polymer. It was also necessary to clarify the possibility of the SUR -8TB_k raw rubber processing by casting under pressure, because this method turns to be the most productive. This method is possible for using if the viscosity according to Muni ratio is higher than 70 conditional units [6-7].

To achieve this xylitane poly ether P-6 BA (the amount is 1,5 and 10 mass parts) was added to the sample of SUR -8TB_k raw rubber with the starting viscosity according to Muni, equal to 113 conditional units. Data of P-6 BA additives influence on the viscosity according to Muni is given in the table 1.

Table 1 - Influence of xylitane poly ether P-6 BA on the technological properties of SUR -8TB_k raw rubber

Quantity of P-6 BA, introduced into the raw rubber, mass part	Viscosity according to Muni, conditional units
0	131
1, 0	94, 5
5, 0	76, 7
10, 0	70, 7

As it is clear from the table, introduction of 5-10 mass parts of the plasticizer leads to the lowering of the viscosity according to Muni from 131 to 70 conditional units it enables us to use this method with different values of viscosity according to Muni.

Physical – mechanical indexes of the vulcanizors, filled with the xylitane poly ether up to 10 mass part., meet the requirements of the State Norms for the raw rubber SUR -8TB_k.

Conclusion

1. The composition of polyurethane rubber based on polyesters of xylitane SUR -8TB_k, obtained from waste from the hydrolysis and fat-and-oil industry, has been developed.
2. The addition of plasticizer to polyurethane rubber based on xylitane polyesters SUR -8tb

reduces the viscosity index according to Muni, which makes it possible to use the injection molding method for processing SUR -8TBk rubber.

3. Polyurethane rubber based on xylitane polyesters SKU-8TBk has good physical and mechanical properties and can be used in various conditions, which significantly expands the scope of application of urethane rubber based on xylitane polyesters.

References

1. Kablov V.F., Novopal`ceva O.M. Kauchuki i receptury` e`lastomerny`x kom-pozicij [Rubbers and formulations of elastomeric compositions]: ucheb.posobie, chast` 2, VolGTU. Volgograd, 2017g.- rezhim dostupa: <http://lib.volpi.ru>.
2. Makitra R.G., Pristavskij R.E., Evchuk I.Yu. Nabuxanie poliuretanovy`x kauchukov v organiceskix rastvoritelyax [Swelling of polyurethane rubbers in organic solvents]: // Vy`sokomolekulyarny`e soedineniya, seriya A, L`vov, 2005, tom 47, N11, s.1987-1992
3. Karpov A.G., Zaikin A.E., Bikmulin R.S. Vliyanie privitogo sopolimera na mezhfaznoe vzaimodejstvie v smesi polipropilen – nitril`ny`j kauchuk [Effect of grafted copolymer on interfacial interaction in a polypropylene–nitrile rubber mixture]: //Vestnik Kazanskogo texnologicheskogo universiteta – 2008, N4, s.72-76
4. Panfilova O.A. Struktura i svojstva termoplastichny`x vulkanizatov na osnove polipropilena i kombinacii izoprenovogo i butadien – nitril`nogo kauchuka: [Structure and properties of thermoplastic vulcanizates based on polypropylene and a combination of isoprene and butadiene–nitrile rubber]: dis....kand.texn.nauk. Kazan`, 2017.-123s.
5. Sagdeeva E`G. Poluchenie dinamicheskix termoplastov na osnove butadien – nitril`ny`x kauchukov i oliolefinov s ispol`zovaniem modificirovannogo texnicheskogo ugleroda: [Production of dynamic thermoplastics based on butadiene – nitrile rubbers and olefins using modified carbon black]: dis....kand.texn.nauk. Kazan`, 2003.-134s.
6. Banerjee, S.S. High-temperature thermoplastic elastomers from rubber-plastic blends: A state-of-the-art review./ S.S.Banerjee, A.K. Bhowmick, // Rubber Chem. Technol.- 2017.- V. 90 - P. 1-36.
7. Xolden, D. Termoe`lastoplasty` [Thermoplastics]: /D.Xolden, X.R. Kri-xel`dorf, R.P. Kuirk, per. s angl. 3-го izdaniya pod red. B.L. Smirnova - SPb: Profes-siya. -2011. - 720 s.

Д.А. Абзалова^{1*}, З.А. Ибрагимова¹, М.А. Алмуханов², Г.О. Алтаева¹, М. Гаражаев¹

¹Т.Ф.к., доцент, М. Әуезов атындағы ОҚУ, Шымкент, Қазақстан

¹PhD, доцент, М. Әуезов атындағы ОҚУ, Шымкент, Қазақстан

²Т.Ф.к., доцент, А. Мырзахметов атындағы Көкшетау университеті, Көкшетау, Қазақстан

¹ага оқытушы, М. Әуезов атындағы ОҚУ, Шымкент, Қазақстан

¹магистр, оқытушы, М. Әуезов атындағы ОҚУ, Шымкент, Қазақстан

***Корреспондент авторы: dilya0158@mail.ru**

КСИЛИТ ПОЛИЭФИРІМЕН МОДИФИКАЦИЯЛАНГАН УРЕТАНДЫ РЕЗЕНДЕНІН ТЕХНОЛОГИЯЛЫҚ ҚАСИЕТТЕРИ

Түйін

Ксилитан полиэфиріне негізделген уретанды каучуктарды алу әдісі жасалды. СКУ-8ПГ уретанды каучук негізіндегі пероксидті өнеркәсіптік вулканизаттар бөлме температурасында кристалданады, сондықтан бұл каучукты вулканизациялау үшін дамыған кеңістіктік құрылымды құрайтын агенттер қолданылады. Тығыз көлденең құрылымның болуы вулканизациялардың кристалдану жылдамдығын төмөндөтеді.

Белгілі сополимерлі полиэфирлерге негізделген уретанды каучуктар кристалданбайды және органикалық пероксидтермен, диазоцианаттармен, вулканизация агенттерінің қоспасымен вулканизациялануы мүмкін.

Тандалған вулканизация жүйесінің сипаты негізінен алынған резенкелердің қасиеттерін анықтайды-олардың қаттылығы, модулі, қалдық деформациясы және басқа қасиеттері, сондықтан

әртүрлі мақсаттағы бөлшектерді жасау үшін өнеркәсіптік уретан каучук СКУ-8ПГ қолданылуы мүмкін. СКУ-8ПГ полиуретаныңдағы метил топтарының едәүір мөлшері кристалдануға және басқа молекулааралық өзара әрекеттесуге кедегі келтіреді. СКУ-8 ПГ резенке негізіндегі резенкелер жақсы әйнектеу температурасына (T_c) ие, бірақ салыстырмалы түрде төмен серпімділікке ие.

Бұл жұмыстың негізгі міндеті-суыққа төзімділігі мен жоғары икемділігі бар гидролиз және май өнеркәсібінің қалдықтары негізінде алынған ксилитан поліэфирлері (СКУ-8ТБ_к) негізіндегі полиуретанды каучукты синтездеу.

Кілттік сөздер: технологиялық қасиеттері, уретан, резенке, шыны ауысу температурасы, viscosity, поліэстер, ксилитан.

Д.А. Абзалова^{1*}, З.А. Ибрагимова¹, М.А. Альмуханов², Г.О. Алтаева¹, М. Гаржаев¹

¹к.т.н., доцент, ЮКУ им. М. Ауэзова, Шымкент, Казахстан

¹PhD, доцент, ЮКУ им. М. Ауэзова, Шымкент, Казахстан

²к.т.н., доцент, Кокшетауский университет им. А.Мырзахметова, Кокшетау, Казахстан

¹ст.преподаватель, ЮКУ им. М.Ауэзова, Шымкент, Казахстан

¹преподаватель, магистр, ЮКУ им. М.Ауэзова, Шымкент, Казахстан

*Автор для корреспонденции: dilya0158@mail.ru

ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА УРЕТАНОВОГО КАУЧУКА, МОДИФИЦИРОВАННОГО КСИЛИТАНОВЫМ ПОЛИЭФИРОМ

Аннотация

Разработан способ получения уретановых каучуков на основе поліэфира ксилитана. Перекисные промышленные вулканизаты на основе уретанового каучука СКУ-8ПГ кристаллизуются при комнатной температуре, поэтому для вулка-низации этого каучука применяются агенты, образующие более развитую простран-ственную структуру. Наличие плотной поперечной структуры снижает скорость кристал-лизации вулканизатов.

Уретановые каучуки на основе известных сополимерных поліэфиров не кристал-лизуются и могут вулканизоваться органическими перекисями, диазоцианатами, смесью вулканизирующих агентов.

Характер выбранной системы вулканизации в значительной мере определяет свойства полученных резин – их твердость, модуль, остаточную деформацию и другие свойства, поэтому промышленный уретановый каучук СКУ-8ПГ может быть применен для изготовления деталей самого различного назначения. Значительное содержание метильных групп в поліуретане СКУ-8ПГ препятствует кристаллизации и другим межмолекулярным взаимодействиям. Резины на основе каучука СКУ-8ПГ обладают хорошей температурой стеклования (T_c), но сравнительно низкой эластичностью.

Основная задача настоящей работы – это синтез полиуретанового каучука на основе поліэфиров ксилитана (СКУ-8ТБ_к), полученного на основе отходов гидролизной и масложировой промышленности, обладающей морозостойкостью и высокой эластичностью.

Ключевые слова: технологические свойства, уретан, каучук, температура стеклования, вязкость, поліэфир, ксилитан.

UDC 615.479.47

L. Aikozova*, A. Bekaulova, M. Ermakhanov, N.U. Assylbek

Cand.Tech.Sci., Associate Professor, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
graduate student, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

cand.chem.sci., associate professor, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
master of chemical technology, lecturer, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan

*Corresponding author's email: laura.aykozova@mail.ru

STUDY OF PROTECTIVE PROPERTIES AND CHARACTERISTICS OF MEDICAL GLOVES

Abstract

In this article, we will analyze the main stages of production of medical gloves, including latex and nitrile gloves. Acrylonitrile butadiene rubber is an elastomer with a fairly impressive set of properties: increased resistance to oils and solvents, tensile strength, abrasion resistance, bending resistance, increased residual deformation under compression and resistance to migration and loss of volatile substances, color retention, weather resistance, and aging resistance. The article also provides the results of studies of the stages of the glove production process. The following production stages are defined: preparation of glove molds; immersion of molds in solution; vulcanization; leaching; formation of a cuff bead; finishing process (chlorination, polymer coating); removal from molds. The article provides the results of quality tests carried out in laboratory conditions.

Keywords: medical, latex, nitrile, vinyl, chainmail gloves chlorination, polymer, powder.

Introduction. At the beginning of the process, it is necessary to rid the mechanical hand forms of any dirt, using soapy water, and then in a chlorine-containing solution. Any foreign substance on the surface of the form can lead to the formation of tears in the glove. After this, the ceramic forms pass through a series of rotating brushes [1]. This is necessary to clean the hard-to-reach areas between the fingers. Then the forms are dipped in a container with hot water and then dried a little. Still slightly damp forms are immersed in a chemical solution, which forms a film on their surface. After this, the ceramic forms are immersed in a warm solution. To increase the durability and elasticity of the gloves, the molds are immersed in a tank containing an acrylonitrile butadiene compound, which may include other additives and colorants. Reacting with the film, it acquires a gel-like structure. Rotation allows excess drops to be removed from the molds before heat treatment. Under the influence of heat, the solution dries [2]. The vulcanization process also occurs in the oven, increasing the strength and elasticity of the glove.

Experimental part. Working with various substances and chemical reagents determines the choice of the appropriate type of gloves [3]. Modern medical gloves differ in the characteristics of the material from which they are made, its chemical composition, production and processing technology, as well as the possibilities of their intended use. Figure 1 shows the stages of production of medical gloves. During the final processing, the gloves undergo special treatment to make them easier to put on. Traditionally, glove manufacturers used powdering. Nowadays, this technology is considered obsolete and is used mainly in the production of latex gloves [4]. Modern methods for making it easier to put on nitrile gloves most often undergo one of two procedures: chlorination and polymer coating. The technical characteristics of the resulting gloves (length of the gloves and thickness of the material used to make them) comply with SS 3-88 [5].

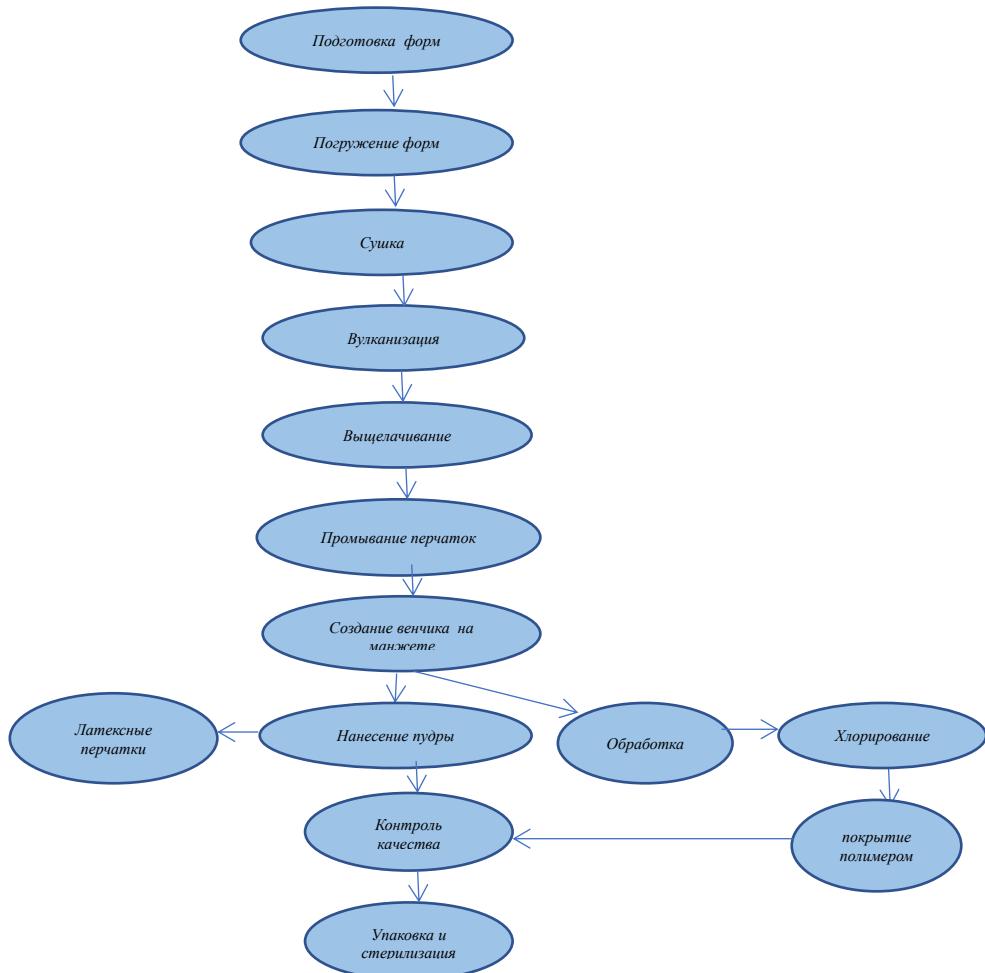


Figure -1. Stages of production of medical gloves

Results and discussion

Tests, conducted in laboratory conditions, showed good chemical resistance and physical characteristics of gloves. Resistance to cuts, punctures and abrasion were also taken into account as a critical factor when using the product. Contact of gloves with aggressive environments always operates in two cases: permeability and degradation [6]. When a glove comes into contact with a conditionally aggressive substance, its degradation begins and, as a result, the penetration coefficient increases. Table 1 lists several chemical substances for medical gloves.

Table -1- Selection of a specific aggressive environment for medical gloves

Chemical substance	Latex gloves	Vinyl gloves	Nitrile gloves
Acetaldehyde	F	N	N
Acetamide	F	N	N
Acetate is a solvent	N	F	F
Acetic acid 80%	F	F	F
Acetic acid 20%	N	G	G
Acetyl chloride (dry)	N	F	N
Acetylene	G	E	G
Acrylonitrile	G	G	N
Acrylic acid	G	-	G

Designations accepted in the table:

E (excellent) - absolutely safe work

G (good) - safe work

F (fair) - can work, conditionally safe work

N (not recommended) - it is not recommended to work - no data

Some glove materials may become hard, rigid, brittle, or they may become softer and swell, increasing in volume to several times their original size. If a chemical significantly affects the physical properties of the glove material, its resistance to penetration will rapidly deteriorate.

Conclusions

In accordance with the Sanitary Rules " Sanitary and Epidemiological Requirements for Facilities in the Sphere of Circulation of Medicines and Medical Devices" [6] , the minimum thickness of smooth examination gloves must be 0.08 mm, and textured 0.11 mm ; the thickness of smooth surgical gloves is 0.1 mm, textured 0.13 mm. The minimum length of examination gloves is 220 mm, and that of surgical gloves is 255 mm. The size of medical gloves must correspond alphabetic and numeric glove size designations . Size XS corresponds to sizes 5.5 and 6; S – 6, 6.5 and 7; M – 7, 7.5 and 8; L – 8 and 8.5. The rules for the use of medical gloves must comply with SS 12.4.307-2016 [7] .

References

1. Nikonov V.V., Feskov A.E. The problem of medical gloves// Emergency Medicine. - 2006. - No. 6. - P. 7.
2. Marchenko A.M. Medical gloves and prevention of latex allergy//Nurse.-2010.-No.2.-P. 26-29.
3. Cherny, A. N., Kanter, B. M., Ratobylsky, G.V., Shelina, N.V., Shutikhina, I.V., Malov, V.A. (2018). Medical glove.
4. Dubel, E. V. (2020). Medical gloves in the clinical diagnostic laboratory: application features and common mistakes. Handbook of the head of the clinical diagnostic laboratory, (4), 64-69.
5. SS 3-88 Rubber gloves. Technical conditions.
6. On approval of the Sanitary Rules "Sanitary and Epidemiological Requirements for Facilities in the Sphere of Circulation of Medicines and Medical Devices" Order of the Minister of Health of the Republic of Kazakhstan dated July 7, 2021 No. KR DSM-58. Registered with the Ministry of Justice of the Republic of Kazakhstan on July 9, 2021 No.23416.
7. SS 12.4.307-2016. Occupational safety standards system. Dielectric gloves made of polymeric materials. General technical requirements and test methods. Put into effect on the territory of the Republic of Kazakhstan from August 1, 2017 in accordance with the order of the Chairman of the Committee for Technical Regulation and Metrology of the Ministry of Investment and Development of the Republic of Kazakhstan dated May 29, 2017 No. 145

Л. Айкозова*, А. Бекаулова, М. Ермаканов, Н.У. Асылбек

т.ғ.к., доцент, М. Әуезов атындағы Оңтүстік Қазақстан университеті, Шымкент, Қазақстан
түлек, М. Әуезов атындағы Оңтүстік Қазақстан университеті, Шымкент, Қазақстан

ш.ғ.к., доцент, М. Әуезов атындағы Оңтүстік Қазақстан университеті, Қазақстан
химиялық технология магистрі, оқытушы, М. Әуезов атындағы Оңтүстік Қазақстан университеті,
Шымкент, Қазақстан

*Корреспондент авторы: laura.aykozova@mail.ru

МЕДИЦИНАЛЫҚ ҚОЛҒАПТАРДЫҢ ҚОРҒАНЫШ ҚАСИЕТТЕРИ МЕН СИПАТТАМАЛАРЫН ЗЕРТТЕУ

Түйін

Бұл мақалада біз медициналық қолғаптарды, соның ішінде латекс пен нитрилді қолғаптарды өндірудің

негізгі кезеңдерін талдаймыз. Акрилонитрилді бутадиенді каучук-бұл өте әсерлі қасиеттері бар эластомер: майлар мен еріткіштерге тәзімділіктің жоғарылауы, созылу беріктігі, тозуға тәзімділігі, иілуге тәзімділігі, сыйымдау кезінде қалдық деформацияның жоғарылауы және ұшпа заттардың миграциясы мен жоғалуына тәзімділігі, түсті сақтау, ауа райына тәзімділік және қартаюға тәзімділік. Мақалада қолғап өндіру процесінің кезеңдерін зерттеу нәтижелері де берілген. Өндірістің келесі кезеңдері анықталған: қолғап қалыптарын дайындау; қалыптарды ерітіндіге батыру; вулканизация; сілтілеу; манжетті моншақ қалыптастыру; әрлеу процесі (хлорлау, полимерлі жабын); қалыптардан шығару. Мақалада зертханалық жағдайда жүргізілген сапа сынақтарының нәтижелері көлтірілген.

Кілттік сөздер: медициналық, латекс, нитрил, винил, шынжырлы қолғаптар хлорлау, полимер, ұнтақ.

Л. Айкозова*, А. Бекаурова, М. Ермаканов, Н.У. Асылбек

канд.техн.наук, доцент, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан

выпускник, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан

к.т.н., доцент, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан

магистр химических наук технология, преподаватель, Южно-Казахстанский университет им. М.

Ауэзова, Шымкент, Казахстан

*Автор для корреспонденции: laura.aykozova@mail.ru

ИССЛЕДОВАНИЕ ЗАЩИТНЫХ СВОЙСТВ И ХАРАКТЕРИСТИК МЕДИЦИНСКИХ ПЕРЧАТОК

Аннотация

В этой статье мы проанализируем основные этапы производства медицинских перчаток, включая латексные и нитриловые перчатки. Акрилонитрилбутадиеновый каучук - это эластомер с довольно впечатляющим набором свойств: повышенной стойкостью к маслам и растворителям, прочностью на растяжение, истиранию, изгибу, повышенной остаточной деформации при сжатии, стойкостью к миграции и потере летучих веществ, сохранению цвета, атмосферостойкости и старению. В статье также приводятся результаты исследований этапов процесса производства перчаток. Определены следующие этапы производства: подготовка форм для перчаток; погружение форм в раствор; вулканизация; выщелачивание; формирование бортика манжеты; завершающий процесс (хлорирование, полимерное покрытие); извлечение из форм. В статье представлены результаты испытаний качества, проведенных в лабораторных условиях.

Ключевые слова: медицинские, латекс, нитрил, винил, кольчужные перчатки, хлорирование, полимер, порошок.