Onmycmik Kazaxcman svinvim JKapuwicol - Becmnux nayxu HOxcnozo Kasaxcmana - South Kazakhstan Science Herald

UDC 004.777:640.433.045

B.K. Berdaliyev®, P.A. Kozhabekova, A.T. Kalbayeva
Master student, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
Cand.Tech.Sci., Associate Professor, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
Cand.Tech.Sci., Associate Professor, M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
“Corresponding Author’s Email: beiybarys.berdaliyev@gmail.com

BEST PRACTICE ARCHITECTURE AND STATE MANAGEMENT IN FLUTTER
APPLICATIONS

Abstract

In the rapidly evolving landscape of mobile application development, Flutter has emerged as a robust
framework for creating high-performance, cross-platform apps. This article explores best practices in
architecture and state management within Flutter applications, with a particular focus on developing
educational tools for Kazakh children to learn about their cultural heritage. We delve into architectural
patterns that enhance code maintainability and scalability, such as MVVM and Clean Architecture.
Additionally, we examine various state management solutions, including Provider, Bloc and Riverpod,
comparing their strengths and use cases. The study highlights the collaborative efforts of the development
team, demonstrating how effective teamwork and role allocation can lead to the successful implementation
of a portable and user-friendly application. By eliminating the existing gap in educational resources adapted
for children, this Flutter-based application offers a free and accessible platform for learning Kazakh
traditions.

Keywords: Flutter, clean architecture, Bloc, Riverpod, state management, user experience, Cross-
platform.

Introduction

In today's digital age, mobile applications have become an integral part of our daily lives,
providing solutions and services across various domains. Flutter, a Ul toolkit developed by Google,
has rapidly gained popularity among developers for its ability to create high-performance, visually
appealing, and natively compiled applications for mobile, web, and desktop from a single codebase.
This versatility makes Flutter an ideal choice for developing cross-platform applications efficiently.

This article focuses on the best practices in architecture and state management for Flutter
applications, using the example of an educational app designed to teach Kazakh traditions to
children. The app is intended for both Android and iOS users, addressing a notable gap in the
availability of cultural and educational resources for Kazakh kids. It is crucial to build such
applications with a solid architectural foundation and effective state management to ensure
maintainability, scalability, and a smooth user experience.

We will explore various architectural patterns, such as Model-View-ViewModel (MVVM)
and Clean Architecture, which help in organizing code and improving its readability and testability.
Additionally, we will delve into state management solutions, including Provider, Bloc, and
Riverpod, comparing their features and appropriate use cases. Effective state management is
essential for handling the dynamic nature of mobile applications and ensuring a responsive and
reliable user interface.

The development of this educational app also highlights the importance of collaboration
within a development team. Efficient teamwork and clear role distribution contribute significantly
to the successful implementation of complex projects. By examining the current systems in use and
their integration with the app, we demonstrate how this Flutter-based application offers a free,
accessible, and portable solution for learning about Kazakh traditions.

In this article, we aim to provide insights and guidelines for developers looking to adopt best
practices in Flutter application development. The principles and methodologies discussed here are

59

Onmycmix Kazaxcman svinvim JKapuvicol - Becmnux nayxu FOxcnozo Kasaxcmana - South Kazakhstan Science Herald

not only applicable to educational apps but can also be generalized to a wide range of mobile
applications, contributing to the advancement of the Flutter development ecosystem [1].

Problem Statement

The development of mobile applications that are both functional and maintainable poses
significant challenges, particularly in the realm of cross-platform development. Flutter, with its
ability to deliver high-performance apps from a single codebase for both Android and iOS, offers a
compelling solution. However, the success of Flutter applications heavily relies on the adoption of
best practices in architecture and state management. Poor architectural decisions can lead to
unmanageable codebases, difficult maintenance, and scalability issues, while ineffective state
management can result in inefficient Ul updates, poor performance, and a suboptimal user
experience.

In the context of educational applications aimed at preserving and teaching cultural heritage,
such as an app designed to teach Kazakh traditions to children, these challenges are compounded.
There is a notable scarcity of quality educational tools tailored to Kazakh kids that are both free and
accessible. Existing applications often require memberships or are not designed with the unique
educational needs of children in mind.

This study addresses the need for a robust architectural framework and efficient state
management strategies in developing a culturally enriching, user-friendly, and maintainable
educational application using Flutter. By focusing on best practices, this article aims to guide
developers in creating applications that are not only effective in teaching but also sustainable in the
long term.

The problem is twofold:

The lack of quality, accessible educational applications for Kazakh children that effectively
teach cultural traditions.

The technical challenges in implementing best practices for architecture and state
management in Flutter to ensure these applications are maintainable, scalable, and provide a
seamless user experience.

Addressing these problems will help bridge the gap in educational resources available to
Kazakh children and provide a blueprint for developers to follow in creating high-quality Flutter
applications [2].

Importance of Architecture in Flutter Applications

A well-structured architecture serves as the backbone of any successful software project,
providing a roadmap for developers to follow and ensuring that the codebase remains maintainable,
scalable, and adaptable to changing requirements. In the context of Flutter, where applications can
quickly grow in complexity, having a clear architectural design becomes paramount [3].

Why Architecture Matters:

e Modularity and Maintainability: A well-defined architecture breaks down the
application into smaller, manageable components, each with its specific responsibility.
This modularity makes it easier to understand, maintain, and extend the codebase over
time.

e Scalability: As applications evolve and grow, a well-thought-out architecture provides
a solid foundation for scaling the application. It allows for new features to be added
seamlessly without causing disruption to existing functionality.

o Code Reusability: An architecture that promotes code reuse enables developers to
leverage existing components across different parts of the application, reducing
development time and minimizing code duplication.

e Testability: By separating concerns and dependencies, a good architecture facilitates
unit testing, making it easier to verify the behavior of individual components in
isolation and ensure the overall correctness of the application.

60

Onmycemix Kazaxcman gvinvim XKapuwwicet - Becmuuk nayxu FOsxcnozo Kazaxcmana - South Kazakhstan Science Herald

Flutter Architectural Layers

N
Framework

Engine

Platform-specific
Embedder

Figure 1. Basics of Flutter Architecture [4].

Architectural Patterns in Flutter: MVVM and Clean Architecture

Two widely adopted architectural patterns in Flutter are the Model-View-ViewModel
(MVVM) and Clean Architecture.

MVVM (Model-View-ViewModel): MVVM separates an application into three main
components: the Model, View, and ViewModel. The Model represents the data and business logic,
the View represents the Ul, and the ViewModel acts as an intermediary between the two, handling
the presentation logic. This separation of concerns promotes code maintainability, testability, and
scalability [5].

In Flutter, implementing MVVM involves creating Dart classes for each component:

e Model: Represents the data and business logic.

e View: Displays the Ul and captures user interactions.

e ViewModel: Acts as a mediator between the Model and the View, handling the
presentation logic and data transformation.

Model Change

Observe Data Callbacks

View V'ewModeI Send Data

Data Streams

Recelve Data

Figure 2. MVVM.
Clean Architecture: Clean Architecture, popularized by Robert C. Martin, emphasizes
separation of concerns and dependency inversion. It divides an application into layers, with the
innermost layer containing the business logic (use cases), surrounded by layers representing the

61

Onmycemix Kazaxcman gvinvim XKapuwwicet - Becmuuk nayxu FOsxcnozo Kazaxcmana - South Kazakhstan Science Herald

interface adapters and frameworks. Clean Architecture fosters independence from external
frameworks, making applications easier to test and maintain.
In Flutter, Clean Architecture can be implemented by organizing code into the following

layers:

o Entities: Represent the core data structures of the application.

e Use Cases: Contain the business logic and application-specific rules.

e Frameworks and Drivers: Interface adapters that connect the application to external

frameworks and platforms [6].

Figure 3. Clean Architecture.

State Management in Flutter

State management is a critical aspect of Flutter development, as it dictates how data is
managed and shared across different parts of an application. Flutter offers various state management
solutions, each catering to different use cases and preferences.

1. Provider

Provider is a lightweight and easy-to-use state management solution that leverages Flutter's
inherited widget mechanism. It promotes a clear separation of concerns and is ideal for small to
medium-sized applications [7].

Advantages: Simplicity, ease of use, and integration with Flutter's widget tree.

Use Cases: Ideal for applications with moderate state management requirements.

2. Bloc (Business Logic Component)

Bloc is a more complex but powerful state management solution that uses the reactive
programming model. It helps separate business logic from the Ul and encourages the use of streams
[8].

Advantages: Scalability, testability, and a clear separation of concerns.

Use Cases: Suitable for larger applications with complex state management needs.

3. Riverpod

Riverpod builds on top of Provider but offers several improvements, such as better support for
code reuse and testing. It provides a more robust and flexible way to manage state.

62

Onmycmix Kazaxcman svinvim JKapuvicol - Becmnux nayxu FOxcnozo Kasaxcmana - South Kazakhstan Science Herald

Advantages: Enhanced testability, flexibility, and a more intuitive API.

Use Cases: Can be used for both simple and complex applications, providing a scalable
solution [9].

Best Practices in Architecture and State Management

Implementing best practices in architecture and state management is crucial for developing
maintainable and scalable Flutter applications. Here are some key principles to follow:

1. Separation of Concerns: Ensure that your code is modular and that each component
has a single responsibility. This makes the codebase easier to manage and test.

2. Use Dependency Injection: Implement dependency injection to decouple classes and
promote code reuse. This can be achieved using packages like get _it or injectable.

3. Adopt a Consistent State Management Solution: Choose a state management solution
that fits the needs of your application and stick with it throughout the project.
Consistency helps maintain a clear and understandable codebase.

4. Leverage Flutter's Composition Model: Flutter’s widget composition model allows
you to build complex Uls from simple widgets. Use this to your advantage by
breaking down your Ul into smaller, reusable components.

5. Implement Unit and Integration Testing: Ensure that your application is well-tested.
Write unit tests for your business logic and integration tests for your state management
and Ul components.

6. Use Linting and Code Analysis Tools: Employ tools like flutter_lints to maintain code
quality and consistency across your project.

Conclusion

Implementing best practices in architecture and state management is essential for building
robust, maintainable, and scalable Flutter applications. By adopting patterns like MVVVM or Clean
Architecture and choosing the right state management solution, developers can ensure their
applications are well-structured and efficient. These practices not only improve the development
process but also enhance the end-user experience, making applications more reliable and enjoyable
to use.

In conclusion, the principles and guidelines discussed in this article provide a strong
foundation for developers looking to harness the full potential of Flutter. Whether you're building a
simple app or a complex, feature-rich application, following these best practices will help you
achieve success in your Flutter development journey.

References
1. GSM Association, the Mobile Society Research Institute within NTT DOCOMO. Children’s use
of mobile phones. An international comparison 2011, pp. 6-25
2. Rideout V,J., Foehr U.G., Roberts D.F. Generation M2: Media in the Lives of 8-to 18-Year-
Olds. Kaiser Family Foundation, 2010, 6p.
3. Flutter ~ Documentation. (n.d.). Flutter ~ Architecture ~ Guide. Available at:
https://flutter.dev/docs/development/data-and-backend/architecture
4. Saurabh Barot. Flutter best practices to follow in 2024. Available at
https://aglowiditsolutions.com/blog/flutter-best-practices/
5. Microsoft. (n.d.). Model-View-ViewModel (MVVM) pattern. Available at:
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
6. Martin R.C. Clean Architecture. A Craftsman’s Guide to Software Structure and Design. New
York, 2017, 39p.
7. Flutter Team. (n.d.). Provider package. Available at: https://pub.dev/packages/provider
8. Flutter Community. Flutter Bloc package. Available at: https://pub.dev/packages/flutter _bloc
9. Riverpod documentation. (n.d.). Available at: https://riverpod.dev/

63

https://flutter.dev/docs/development/data-and-backend/architecture
https://aglowiditsolutions.com/blog/flutter-best-practices/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://pub.dev/packages/provider
https://pub.dev/packages/flutter_bloc
https://riverpod.dev/

Onmycmik Kazaxcman svinvim JKapuwicol - Becmnux nayxu HOxcnozo Kasaxcmana - South Kazakhstan Science Herald

Bb.K. Bepaaames”, ILA. Koxka6exosa, A.T. Kanoaesa
MarucTpant, M. Oye3oB aTeiHAarel OHTYCTiK KasakcTan yauBepcureri, [lIsiMkenT, Kazakcran
T.F.K., TOo1IeHT, M. Oye30B AteiHnarsl OHTycTik Kazakcran yauBepcuteTi, [lIsiMikenT, KazakcTan
T.F.K., J0IIeHT, M. Oye30B ATeiHaarel OHTYCTiK KazakcTan yHuepcuterti, IlIsiMkent, Kazakcran
“Koppecnonaent aBropni: beiybarys.berdaliyev@gmail.com

Y3IK TOKIPUBE COVJIET JKOHE MEMJIEKETTIK BACKAPY FLUTTER
KOCBIMIIAJIAPBIHIA

Tyitin

MoObunpai KOCBIMITIANIAPABI J3IpJEyMiH KapKbIHABI JaMBIT Keie jkaTkaH nanmmadTeiaga Flutter
OHIMAUIITT JKOFapbl KpOCC-TIaTGOpPMaNbIK KOCHIMINANAPALl KYPYAbIH CEHIMAI Heri3iHe aiHanabl. By
Makanana Kasak OamamapblHBIH MOJICHH Mypanapbl Typanbl Oty yuriH OiniM Oepy KypangapblH o3ipieyre
epeKIe Hazap aymapa OTHIpeII, Flutter KommaHOamaphl asChIHAA COYJIET JKOHE MEMIICKETTIK Oackapy
caJachIHIAFBl O3BIK TaXKipubOenep Kapacteipbuianel. bI3 mvvm JXome Clean Architecture CHSKTBI KOXTHIH
CaKTalybl MEH MacINTaOTaTybIH JKaKCAPTAThIH apXUTEKTYPAIBIK YITinepai 3eprretiMiz. CoHbIMeH KaTap, bi3
MemMiekeTTik OackapyablH OpTYpJIi IMeNIiMAepiH, COHBIH immnHme JKeTkizymriepmi, biokrapapl »xoHe
Riverpod-Tel omapabiH KYIITI)KaKTapbl MEH MaiianaHy KarIaiIapblH CajJbICThIPA OTHIPHIN KapacThIpaMbI3.
3eprTey o3ipieymrinep TOOBIHBIH OipiecKeH KyII-KirepiH KepceTeldi, OYI TONTHIK >KYMBIC TeH pesaepai
OeJy[iH TMOPTAaTHBTI XOHE MalJanaHyIIbIFa BIHFAMIBI KOJIAHOAHBI COTTI CHTI3yre KaHINAJIBIKTHI THIMII
oKkeneTiHiH KepceTeni. bamanmapra Oeifimaenren OiiimM Oepy pecypcTapbIHAAFbI 0ap OJKBUIBIKTHI KOO apKBLITBI
Byn Flutter Herizinmeri konmaHOa Ka3zak MASCTYpJepiH YHpeHyre apHaiFaH TEriH JKOHE KOJDKETIMI
1aT(hopMaHbl YCHIHABL.

Kintrik ce3aep: Flutter, Taza coyner, biok, Riverpod, MmemiiekeTTik 6ackapy, maiganaHyIrb
ToXipuOeci, Kpocc-maTdopma.

Bb.K. bepnanues*, I1.A. Ko:xka0exoBa, A. T. Kanoaesa
Maructpant, FOxHo-Kazaxcranckuil yausepcurer uM. M. Ayazosa, [lIsiMkeHT, Kazaxcran
K.T.H., 1oueHT, FOxHo-Ka3axcranckuil yausepcuteT uM. M. Ayazosa, lIeimkenT, Kazaxcran
K.T.H., AoteHT, FOxxno-Kazaxcranckuii yausepcuret uM. M. Ayazosa, llIsivmkent, Kazaxcran
“ABTOp 1151 Koppecnonaennuu: beiybarys.berdaliyev@gmail.com

JIYUYIIASA ITPAKTUKA APXUTEKTYPA U TOCYJAPCTBEHHOE YIIPABJIEHUE B
IMPHJIOKEHUAX FLUTTER

AHHOTANUA

B ObicTpo MeHstomeMcsi MUpe pa3paOdoTKHM MOOMIBHBIX mnpuioxeHuit Flutter cram Hange:xHOH
1aTGOpMON I CO31aHHs BBICOKOIIPOM3BOANUTENBHBIX KPOCCIUIATQOPMEHHBIX NPUIOKeHUH. B 3T0i1 cTathe
paccMaTpuBalOTCs Jy4IIME TMPAaKTUKA B OONACTH apXHUTEKTYPbl M TOCYJApCTBEHHOIO YIpPAaBICHUS B
npuiokeHusax Flutter, c 0coObIM akIIeHTOM Ha pa3paboTKy 00pa30oBaTeNbHBIX HHCTPYMEHTOB, TO3BOJISIOIINX
Ka3aXxCTaHCKUM JETSM Y3HaTb O CBOEM KYJIBTYPHOM HacieAud. MBbl HccleayeM apXUTEKTypHble MaOIoHBI,
KOTOPBIC YIIYUIIAl0T yIOOCTBO COMPOBOXKICHUS M MAacIITaOMpyeMOCTh Kofa, Takue kak MVVM u umcras
apxurekTypa. KpoMme Toro, Mbpl m3y4aeM pasiHuyHbIC pEIICHHs Ui YNPaBJICHUS COCTOSHHEM, BKIIOYAs
Provider, Block u Riverpod, cpaBHuBas MX CHIIbHBIE CTOPOHBI M BapHAHTHI HCIIONB30BaHUA. B nccienoBanumn
OCBEIAIOTCS COBMECTHBIE YCHJIHMS KOMaHABI pPa3pabOTUMKOB, ASMOHCTPUpYIOMIHE, Kak 3¢ ¢eKTuBHAL
KOMaHJHasg paboTa M pacrpeneneHne posieid MOTYT MPHUBECTH K YCIEUIHOW peasu3alldil MOpPTaTUBHOTO U
yAOOHOTO B MCIONB30BaHUH MPHIIOKEHHS. YCTpaHssl CYIECTBYIOIIMI Mpobe B 00pa3oBaTeIbHBIX pecypcax,
aJIaTHPOBAHHBIX [UIA JETeH, 3TO NMpHiIokeHHe Ha ocHoBe Flutter mpeanaraer OecIulaTHYIO W OCTYIIHYIO
w1aTGopMy IJIs U3yUeHHsI Ka3aXCKUX TPaaUuLUil.

KarueBbie caoBa: Flutter, uucras apxurekrypa, Block, Riverpod, ympaBmeHue cocrosHueMm,
TIOJTE30BATEIBCKUH OIBIT, KPOCCIUIAT(OPMEHHOCTB.

64

mailto:beiybarys.berdaliyev@gmail.com

	(№3 2024) 27 ВЕСТНИК-1 59
	(№3 2024) 27 ВЕСТНИК-1 60
	(№3 2024) 27 ВЕСТНИК-1 61
	(№3 2024) 27 ВЕСТНИК-1 62
	(№3 2024) 27 ВЕСТНИК-1 63
	(№3 2024) 27 ВЕСТНИК-1 64

